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Abstract. The publication of the International Conference of Harmonization (ICH) Q8, Q9, and Q10
guidelines paved the way for the standardization of quality after the Food and Drug Administration issued
current Good Manufacturing Practices guidelines in 2003. “Quality by Design”, mentioned in the ICH Q8
guideline, offers a better scientific understanding of critical process and product qualities using knowledge
obtained during the life cycle of a product. In this scope, the “knowledge space” is a summary of all
process knowledge obtained during product development, and the “design space” is the area in which a
product can be manufactured within acceptable limits. To create the spaces, artificial neural networks
(ANNs) can be used to emphasize the multidimensional interactions of input variables and to closely bind
these variables to a design space. This helps guide the experimental design process to include interactions
among the input variables, along with modeling and optimization of pharmaceutical formulations. The
objective of this study was to develop an integrated multivariate approach to obtain a quality product
based on an understanding of the cause–effect relationships between formulation ingredients and product
properties with ANNs and genetic programming on the ramipril tablets prepared by the direct compres-
sion method. In this study, the data are generated through the systematic application of the design of
experiments (DoE) principles and optimization studies using artificial neural networks and neurofuzzy
logic programs.

KEY WORDS: artificial neural networks (ANNs); gene expression programming (GEP); optimization;
quality by design (QbD).

INTRODUCTION

The studies and tests required to deliver a new drug to
patients take no less than 15 years and cost estimate $800
million USD (1). Even after a drug is invented, its develop-
ment may fail because of an inability to manufacture the drug
safely on a large scale and in compliance with the manufactur-
er's specifications.

The length of the approval process has been a concern in
the drug industry for many decades. Today, it is known that
this process, which involves a considerable amount of paper-
work for evaluation and approval of new product submissions,
is slow, cumbersome, and causes excessive delays. For this
reason, in recent years, the drug industry experienced major
developments in production information, quality management
systems, and risk management, and the industry developed
modern production tools that can assist in ensuring product
quality.

In 2002, the FDA introduced the amendments in the
current Good Manufacturing Practices (cGMP) to the drug
industry to improve and modernize the rules that regulate
drug manufacturing and drug quality. Second, the guideline
Q8, “Pharmaceutical Development”, of the ICH, which har-
monizes the technical requirements for pharmaceutical prod-
ucts in Europe, the USA, and Japan, was published in 2005. It
introduced the concept of quality by design (QbD) into the
drug industry (2). QbD is a systematic approach to pharma-
ceutical development that refers to designing and developing
formulations and manufacturing processes that can generate a
prescribed product quality. In other words, QbD adopts the
understanding that “quality cannot be tested into products; it
should be built-in during the designing phase” (3). Based on
this understanding, the ICH guidelines Q9, “Quality Risk
Management,” and Q10, “Pharmaceutical Quality System,”
were published. The guideline Q9 offers principles for quality
risk management that can be applied to different aspects of
drug quality (4). As for Q10, it is a comprehensive approach
that establishes an effective pharmaceutical quality system
based on the ISO concepts, and it includes the regulations of
cGMP and the components of ICH Q8 and ICH Q9 (5). In
addition to these three guidelines, ICH Q11, “Development
and Manufacture of the Drug Substances” which was pre-
pared for the Active Pharmaceutical Ingredients committee,
is in the pipeline at present (6).
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Pharmaceutical drug manufacturing, from formulation
development to finished product, is very complex. This pro-
cess includes multivariate interactions between raw materials
and process conditions. These interactions are very important
for the processability and quality of the finished product.
Hence, these interactions should be taken into account early
on, such that later loss of time and money is not incurred (7).

The use of artificial intelligence in pharmaceutical technol-
ogy has increased over the years, and the use of technology can
save time and money while providing a better understanding of
the relationships between different formulation and process
parameters. Neural networks, genetic algorithms, and fuzzy
logic are rapidly growing technologies that could be applied to
the formulation and processing of pharmaceutical products.

Using previous experiments to train the model is an
important advantage of artificial intelligence technology that
speaks to its efficiency. ANN programs are useful for under-
standing cause-and-effect relationships between inputs (as
formulation parameters) and outputs (as product properties).

The genetic algorithm is an effective and useful tool to
predict the results that arise from changes in the input param-
eters, such as the formulation. Using this approach with neural
networks can be productive because it provides “what if”
predictions and optimization (8, 9).

For controlling and decision-making, fuzzy logic is a very
powerful problem-solving technique. It provides very useful
rules from input data, in the form of “if… so… then” (10, 11).
Fuzzy logic can be combined with neural networks as neuro-
fuzzy logic. This combination provides more flexibility and
capability to the technique and provides powerful results (12).

Ramipril tablet is used as a model drug. Ramipril is a
white or off white, crystalline powder that freely soluble in
methanol and sparingly soluble in water. With reference to the
European Pharmacopeia Ramipril monograf, there are four
qualified impurities called impurity A (ramipril methyl ester),
impurity B (ramipril isopropyl ester), impurity C (hexahydror-
amipril), and impurity D (ramipril diketopiperazine). Impuri-
ty A and impurity B are process impurities. Impurity C is
formed if the ramipril manufacturing starting material ethox-
ycarbonyl phenyl propyl amine contains cyclohexyl impurity.
Impurity D can be a process or stability impurity according to
heat or cyclisation between –COOH and –NH groups, impu-
rity D may be formed (13). Ramipril is used for the treatment
of congestive heart failure (CHF) and hypertension (high
blood pressure) and prevents heart attacks, strokes, and
deaths due to heart disease in patients who have risk factors
for such events (14).

The modeling of ramipril tablet formulation and produc-
tion using the new science- and risk-based techniques has
many advantages over traditional modeling techniques, espe-
cially in the assessment of nonlinear relationships, which are
frequently observed in pharmaceutical operations. The pur-
pose of the study is to establish the tablet formulation con-
taining the ramipril drug substance based on the ObD
approach. By applying different formulation parameters relat-
ed to the lubricants, we will use ANN programs to improve
our understanding of how the critical quality attributes con-
tribute to the overall quality of the drug product. Three com-
mercial artificial intelligence software tools representing the
three technologies were used in this study: INForm V.4 ANN
for neural networks, FormRules V.3.32 for neurofuzzy logic
and INForm V.4 GEP (15).

MATERIAL AND METHOD

Material

A tablet compression machine with 27 stations (Manesty
BB3B, BB3B), a sieving machine (Erweka, AR 402), a high-
performance liquid chromatography (HPLC) (Thermo Separa-
tion Products, AS 3000), an ultrasonic bath (BanbelinSonorex,
RK 1,028H), a dissolution apparatus (Distek, EVOLUTION
6100), a V-type powder mixer (Aymes, AISI304), a Karl-Fischer
titrator (Schott, D-551222), a hardness apparatus (Sotax, HT4),
a friability apparatus (Sotax, F1), a disintegration apparatus
(Distek, DISINTEGRATION 3100), an SEM (scanning elec-
tron microscope) (FEI, Quanda 250 FEG), the FormRules com-
puter program (INtelligent Formulation, V.3.32), and INForm
computer program (INtelligent Formulation, V.4) were used for
this study. The raw materials used for the formulations were
ramipril (Neuland Labs Ltd., India), hydroxypropyl methyl cel-
lulose (HPMC) (viscosity: between 15 mPa.s) (BASF, Ger-
many), lactose mono-hydrate (DMV, Holland), sodium
hydrogen carbonate (Merck, Germany), croscarmellose sodium
(CP Kelco, Holland), pregelatinized starch (Colorcon, Eng-
land), yellow iron oxide (BASF, Germany) and red iron oxide
(Merck, Germany), andMgSt (FACI S.p.A, Italy) and SSF (JRS
PHARMA, Germany).

Data Set

In this study, a two-level hierarchical experimental design
consisting of 16 experiments was used to evaluate the effect of
two formulation variables on the quality of ramipril tablets
manufactured by direct compression. The lubricant types that
were selected were magnesium stearate (MgSt) and sodium
stearyl fumarate (SSF). Lubricant concentrations ranged from
0.75 to 1.0% for MgSt and 0.6–1.2% for SSF (Tables I and II).
Of the data produced, 15% of the experimental records were
separated for use as test data and for validation. The remain-
ing data were used for training the software.

Table I. Knowledge Area Data (Any Information on the Experimen-
tal Design)

No. Formula no. HPMC ratio (%) Lubricant type
Amount of

lubricant (%)

1 K1A1 0.25:1.0 MgSt 0.75
2 K1B1 0.25:1.0 MgSt 0.75
3 K1A2 0.25:1.0 MgSt 1.0
4 K1B2 0.25:1.0 MgSt 1.0
5 K1A3 0.25:1.0 SSF 0.6
6 K1B3 0.25:1.0 SSF 0.6
7 K1A4 0.25:1.0 SSF 1.2
8 K1B4 0.25:1.0 SSF 1.2
9 K2A1 0.75:1.0 MgSt 0.75
10 K2B1 0.75:1.0 MgSt 0.75
11 K2A2 0.75:1.0 MgSt 1.0
12 K2B2 0.75:1.0 MgSt 1.0
13 K2A3 0.75:1.0 SSF 0.6
14 K2B3 0.75:1.0 SSF 0.6
15 K2A4 0.75:1.0 SSF 1.2
16 K2B4 0.75:1.0 SSF 1.2

MgSt magnesium stearate, SSF sodium stearyl fumarate
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Tablet Formulation and Manufacturing

The drug substances and excipients in the amounts de-
tailed in Table I were weighed in preparation of tablets. Ram-
ipril and HPMC were mixed for 15 min in a V-type mixer and
then sieved. Lactose mono-hydrate, sodium hydrogen carbon-
ate, croscarmellose sodium, pregelatinized starch, yellow iron
oxide, and red iron oxide were filtered through a sieve with a
0.85-mm aperture size and mixed for 15 min with a V-type
mixer, added to the previous powder mass and then mixed
again for 15 min. The final mixture was divided into four
portions. The first two portions were mixed for 2 min with
MgSt, and the other two portions were mixed with SSF with
the V-type mixer for 2 min. The tablets were then compressed
using an eccentric tablet compression machine using 4.06×
8.06-mm punch at a target weight of 130 mg.

Critical Quality Attributes

The crushing strength, the ability to dissolve within
30 min, the active ingredient content and the levels of impurity
C (%) and impurity D (%) were selected as critical quality
attributes at the end of the process and risk assessment stud-
ies. Measurements of the selected quality attributes were per-
formed on the manufactured tablets.

The crushing strength of the tablets was determined using
a Sotax HT4 hardness tester. The ability to dissolve within
30 min was measured using dissolution testing equipment at
the conditions that are specified in the USP 24 method II
(paddle) of the USP (16). HPLC was used to analyze the
ramipril drug substance with “Ramipril EP Reference Stand-
ards A, B, C and D,” and the chromatographic conditions for
this method are given in “HPLC Analysis” section. For this
assay, 10–20 tablets were ground and dissolved at a specific
concentration and in an appropriate solvent. The chromato-
graphic conditions for the method are indicated in the “HPLC
Analysis” section.

HPLC Analysis

An isocratic chromatographic method was used for the
analysis of the ramipril assay from the dissolution media. The
HPLC system consisted of a Thermo Separation Products (AS
3000, USA) equipped with a Series 105 pump, a Series 105
autosampler, and a Series 095 UV/VIS detector. The analytical
column was a Luna C18 (50×2.0 mm, 3 μm, Phenemonex Com-
pany, USA). The signal was monitored at 240 nm. The mobile
phase consisted of methanol/phosphate buffer at a ratio of
(45:55; v/v). The flow rate was set at 0.4ml/min, and the injection
volume was 100 μl. The chromatogram time was 8 min, and the
retention time was approximately 4.7 min. The developed
HPLC method was validated as per the ICH guideline (17).
The gradient program is given in Table III. Also, validation
parameters for the HPLC analytical method were specificity,
linearity/range/repeatability, precision, accuracy, detection limit,
quantitation limit, robustness, and system suitability.

The gradient chromatographic method was used for the
assay of the ramipril. The same HPLC system used for the
ramipril drug substance analysis was used. The analytical column
was a Luna C18 (100×2.0 mm, 3 μm, Phenemonex Company,
USA). The signal was monitored at 240 nm. The mobile phase
consisted of solution A: methanol (8%)/phosphate buffer (92%)
and solution B: methanol (80%)/phosphate buffer (20%). The
flow rate was set at 0.5 ml/min, and the injection volume was

Table III. The Chromatographic Conditions for the Dissolution Method

Gradient program

Time (min) Solution A (%) Solution B (%) Flow rate (ml/min)

0 67 33 0.5
10 12 88 0.5
12 0 100 0.5
15 0 100 0.5
16 67 33 0.5
20 67 33 0.5

Table IV. INForm Study Conditions for Direct Compression Tablets

DC INForm ANN study conditions

Model type: neural network Training parameters Inputs/outputs

Number of hidden layers (HL) 1 Back-propagation parameters Inputs
HPMC

Momentum 0.8 Lubricant
Current hidden layer (CHL) 1 Learning rate 0.7 Lubricant Conc.
Number of nodes (NN) 2 Targets Outputs

Tb. weight
Target epochs 1,000 C.S.

Friability
Transfer function Asymmetric sigmoid Target MS error 0.0001 Disint. Time

Diss. (%)
Output transfer function Linear Random seed 1,000 Assay

Imp. A
Imp. B
Imp. C
Imp. D

Conc. concentration, Tb. tablet, C.S. crushing strength, Disint. disintegration, Diss. dissolution, Imp. Impurity

1141A QbD Approach for Direct Compressed Tablet Formulation



100 μl. The chromatogram time was 20 min. The developed
HPLC method was validated as per the ICH guideline (17).
The aforementioned ramipril equipment and reagents were used
for the impurity analyses. Standard and sample solutions were
prepared as described in “The Preparation of Solutions” section.

The Preparation of Solutions

Solvent Solution. Acetonitrile:methanol (1:1; v/v).

Diluting Solution. Acetonitrile:methanol/phosphate buff-
er pH: 2.6 (12.5%:12.5%:75%; v/v/v).

Stock Standard Solution. In a 100-ml volumetric flask,
12.5 mg of ramipril standard was accurately weighed and
dissolved into 25 ml of solvent solution. The flask was filled
to its indicated capacity with phosphate buffer and mixed. The
solution was passed through a 0.45-μm membrane filter, and
the first filtered portion was discarded.

Working Standard Solution. Approximately 0.5 ml of
ramipril stock standard solution was placed into a 100-ml
volumetric flask, and the flask was filled to its indicated ca-
pacity with diluting solution and mixed. The solution was
passed through a 0.45-μm membrane filter, and the first fil-
tered portion was discarded (ramipril, 0.625 μg/ml).

Sample Solution (Two Prepared Solutions). Twenty tab-
lets were weighed and ground into powder with a mortar and
pestle. Into a 50-ml volumetric flask, 162.5 mg of sample
(equivalent to 6.25 mg ramipril) was accurately weighed.
Then, 12.5 ml of solvent solution was added, and the mixture
was held for 10 min in an ultrasonic bath. Next, 20 ml of

phosphate buffer was added, and the mixture was shaken in
a magnetic mixer for 20 min. The remaining volume in the
volumetric flask containing the solution was filled with phos-
phate buffer, and the solution was mixed. The solution was
then passed through a 0.45-μm membrane filter. The first
filtered portion was discarded, and the rest was injected (Ram-
ipril, 125 μg/ml).

Operation. The standard solution was injected into the
system three times. The average peak area and the RSD were
calculated. The RSD should not exceed 2.0%. Sample solu-
tions were prepared twice, and samples from each preparation
were injected thrice. The standard solution was injected to the
system three times, and the average peak area and RSD were
calculated (RSD=maximum 2.0%).

Calculation of Impurities

AI

AStd
� WStd=100� 0:5=100

WN=50� La
� Ps � 100�WT

¼ impurity% %of Ramiprilð Þ

AI Each of the peak areas of impurity A, impurity B,
impurity C, and impurity D in the sample chromatogram

AStd Ramipril peak area in the standard chromatogram
WStd Ramipril standard mass, milligrams
Ps Ramipril standard, percent
WN Sample mass, milligrams
WT Average tablet mass (milligrams per tablet)
La Ramipril amount in the tablet (5 mg)

Table V. Usage of Minimum and Maximum Study Results for Knowledge Area Study

Minimum values Maximum values

Property
weight Minimum Mid.1 Mid.2 Maximum

Desirability
function

Property
weight Minimum Mid.1 Mid.2 Maximum

Desirability
function

Crushing strength (N) 10 53 53.01 53.01 70 ↓ 10 53 69.99 69.99 70 ↑
Diss. in 30 min (%) 10 88 88.01 88.01 100 ↓ 10 88 99.99 99.99 100 ↑
Assay (mg/tablet) 10 4.46 4.47 4.47 4.92 ↓ 10 4.46 4.91 4.91 4.92 ↑
Imp C (%) 10 0.01 0.02 0.02 0.02 ↑ 10 0.01 0.02 0.02 0.02 ↓
Imp D (%) 10 0.16 0.17 0.17 0.33 ↑ 10 0.16 0.32 0.32 0.33 ↓

Diss. dissolution, Imp impurity

Table VI. Usage of Minimum and Maximum Pharmacopeia/in-house Limit Values for Design Space Study

Minimum values Maximum values

Property
weight Minimum Mid.1 Mid.2 Maximum

Desirability
function

Property
weight Minimum Mid.1 Mid.2 Maximum

Desirability
function

Crushing strength (N) 10 30 30.01 30.01 60 ↓ 10 30 59.99 59.99 60 ↑
Diss. in 30 min (%) 10 80 80.01 80.01 110 ↓ 10 80 109.99 109.99 110 ↑
Assay (mg/tablet) 10 4.5 4.51 4.51 5.5 ↓ 10 4.5 5.49 5.49 5.5 ↑
Imp C (%) 10 0.00 0.01 0.01 0.5 ↑ 10 0.00 0.49 0.49 0.5 ↓
Imp D (%) 10 0.00 0.01 0.01 3.0 ↑ 10 0.00 2.99 2.99 3.0 ↓

Diss. dissolution, Imp impurity

1142 Aksu et al.



The ramipril tablet specifications and control methods
are specified and analyzed according to the European Phar-
macopeia (13). The results are given in Table II.

EXPERIMENTS

Software Tools

Three commercially available artificial intelligence soft-
ware tools were used to examine the production date gen-
erated in these studies. All software packages were
provided by Intelligensys Ltd., (INForm V.4 ANN, INForm
V.4 GEP, and FormRules V.3.32, Intelligensys Ltd., Eng-
land). FormRules V.3.32 is a data-mining software package
developed by Intelligensys Ltd., which makes use of neuro-
fuzzy logic as the basic technology. The FormRules system
was described previously by Shao et al., 2007 (18). INForm
software develops predictive models and optimizes these
models (19). The program utilizes ANNs, genetic algo-
rithms (GEP), and fuzzy logic (15).

Training Parameters

Because the training parameters influence the structure of
the neural networks during the training process, the parameters
in INForm V.4 and FormRules V.3.32 were manipulated to
optimize the predictability of the trained networks (18, 20).
After trying various parameters, it was determined that the
suggested parameters in the manual of INFormV.4 and For-
mRules V.3.32 were suitable parameters to use. The FormRules
settings used for training are given below. Additionally, the
ANN program study conditions are given in Table IV. To vali-
date the predictability of trained models, the nonlinear coeffi-
cient of determination R2 was computed against the validation
data set (21).

Model: structural risk minimization
Second order fuzzy set densities: 2/3
Fuzzy sets maximum submodel inputs: 4
Maximum node per input: 15

RESULTS AND DISCUSSION

Optimization of the data obtained for the direct compres-
sion of tablets was performed in this study using the INFormV.4
ANN. When the INForm ANN model was trained, the model
was optimized with target values based on pharmacopeial and
in-house specifications. The minimum and maximum values to
be applied for optimization in the program were determined,
with consideration of values for critical quality properties
obtained from the studies (Table V).

Each property weight value was specified as 10 to evalu-
ate the importance of each critical parameter on a scale of 0 to
10, with 10 being the most important. The other five columns
—min, mid1, mid2, max, and desirability function are used to
describe the values that wanted to be used from the proper-
ties. For the desirability function, up means that the values
that lie above Mid1 are desirable (desirability function 100%)
and down means that the values that lie below mid2 are
desirable (desirability function 100%) (15). Optimization was

performed separately for formulations containing MgSt and
SSF. The same evaluations were conducted by taking into
account the in-house limits and the values available in the
pharmacopeia for design space studies (Table VI).

Formulation interactions were individually evaluated for
two lubricants (MgSt/SSF) and tested with the INForm ANN
program. After the training was completed, ANN recommen-
ded a set of conditions (formulation) at which the optimum
levels for the quality attributes could be achieved (Tables VII
and VIII). The tablets were prepared according to optimal
formulation parameters, and various tests were performed on
the prepared tablets.

The optimized data of the differences between the
pharmacopeia min. and max. values was used to define
the design area and minimum and maximum values of
studied data to define the knowledge area. The knowledge
and design area values of tablet parameters prepared by
direct compression and using MgSt are given in Table IX.
In addition, the knowledge and design area limits were

Table VII. Optimization Results of Minimum and Maximum Values
on Direct Compressed Tablets According to Study Data (Knowledge

Area Borders)

Lubricant (MgSt) Lubricant (SSF)

Minimum Maximum Minimum Maximum

Inputs
HPMC (%) 0.308 0.250 0.542 0.667
Lubricant
concentration (%)

0.600 0.900 0.600 1.054

Outputs
Crushing strength (N) 61.424 69.455 61.518 69.393
Diss. in 30 min (%) 94.014 94.805 94.427 94.697
Assay (mg/tablet) 4.663 4.670 4.685 4.680
Impurity C (%) 0.01 0.015 0.014 0.015
Impurity D (%) 0.208 0.219 0.228 0.256

MgSt magnesium stearate, SSF sodium stearyl fumarate, HPMC
hydroxypropylmethylcellulose, Diss. dissolution

Table VIII. Optimization Results of Minimum and Maximum Values
for Tablets According to Pharmacopeia/in-house Data (Design Area

Borders)

Lubricant (MgSt) Lubricant (SSF)

Minimum Maximum Minimum Maximum

Inputs
HPMC (%) 0.250 0.750 0.250 0.750
Lubricant
concentration (%)

0.900 1.200 1.200 1.200

Outputs
Crushing strength (N) 59.46 61.291 61.500 69.999
Diss. in 30 min (%) 93.30 94.895 92.120 95.618
Assay (mg/tablet) 4.66 4.731 4.529 4.742
Impurity C (%) 0.011 0.020 0.010 0.015
Impurity D (%) 0.223 0.239 0.217 0.234

MgSt magnesium stearate, SSF sodium stearyl fumarate, HPMC
hydroxypropylmethylcellulose, Diss. dissolution
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handled as area calculations, and all values are shown in
the figures (Figs. 1 and 2).

When the histograms given in Figs. 1 and 2 were
examined, it was determined that the design area provid-
ed by the formulations that we provided was within the
knowledge area for the hardness parameter. In addition,
based on the data we acquired from FormRules, hardness
was dependent on and inversely proportional to the
HPMC concentration. To obtain the ideal formulation,
we increased the HPMC concentrations being used to
enter the design area, such that the lower concentration
value increased from 0.25% to 0.30%. Because impurity C
was remarkably affected based on the histogram data
(Figs. 1 and 2), the formulation examinations performed
with FormRules were assessed. Based on FormRules, it
was ascertained that the amount of impurity C was also
inversely proportional to the lubricant concentration. Al-
though there was a limit to how high impurity C could be
based on the formulation, optimization values were taken
into account, and the concentration interval that was suit-
able for achieving an ideal concentration was determined.
This was performed in consideration of the need to keep
impurity C at a minimum (as would be achieved in an
ideal formulation).

As a result, it was concluded that the amount of
HPMC should be between 0.25% and 0.30% and that MgSt

should be between 0.60% and 0.90% for an optimum for-
mulation, according to histogram data and optimization
data (Table X).

Additionally, the knowledge area and design area values
were made in the same manner for the HPMC/SSF tablets,
and the values are given in Table XI. All values are shown in
Figs. 3 and 4.

When we examined the histogram of the data for
formulas using SSF, the hardness, impurity C, and impurity
D were critical parameters (Fig. 4). In consideration of the
histogram of the data, it can be inferred that the design
area is outside of the knowledge area with respect to the
hardness parameter. It can be observed that the design area
we were provided based on our formulations was within the
information area in terms of the parameter for impurity D.
With respect to impurity C, a significant difference can be
observed between the design area and the information area
(Fig. 4). Therefore, the relation between the crucial param-
eters and the formulation parameters was assessed, and the
histograms of the data and the FormRules data were
assessed in terms of the formulation variables. Based on
the FormRules, it can be concluded that the hardness was
associated with and directly proportional to the lubricant
concentration. Impurity C was not affected by the HPMC
concentration, and impurity D was not affected by the
lubricant concentration. When we examine the histogram

Fig. 1. Graphical image of knowledge and design area for inputs of
tablets prepared by using HPMC/MgSt. HPMC hydroxypropylme-
thylcellulose, Lubr. Conc. lubricant concentration

Fig. 2. Graphical image of knowledge and design area for outputs of
tablets prepared by using HPMC/MgSt. C.S. crushing strength,
D30min dissolution in 30 min, Imp impurity

Table IX. Knowledge and Design Area Values of Tablet Parameters
Prepared by Direct Compression and MgSt

Knowledge area Design area

Inputs
HPMC (%) −0.188 2.00
Lubricant concentration (%) 0.500 0.333
Outputs
Crushing strength (N) 0.131 0.031
Dissolution in 30 min (%) 0.008 0.017
Assay (mg/tablet) 0.002 0.015
Impurity C (%) 0.500 0.818
Impurity D (%) 0.0529 0.072

The positive values show the direction of increasing; the negative
values show the direction of decreasing as percentage difference
HPMC hydroxypropylmethylcellulose

Table X. Finished Product Analysis Results of Direct Compressed
Tablets Prepared by Using MgSt According to Area

Knowledge
area limits

Design area
limits

Analysis
data

Inputs
HPMC (%) 0.250–0.308 0.250–0.750 0.275
Magnesium stearate (%) 0.600–0.900 0.900–1.200 0.750
Outputs
Crushing strength (N) 61.424–69.455 59.46–61.291 61
Dissolution in 30
min (%)

94.014–94.805 93.30–94.895 94

Assay (mg/tablet) 4.663–4.670 4.66–4.731 4.5
Impurity C (%) 0.01–0.015 0.011–0.020 0.01
Impurity D (%) 0.208–0.219 0.223–0.239 0.2

HPMC hydroxypropylmethylcellulose
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data with respect to the formulation variables, it can be
observed that the amount of lubricant was far greater than
the amount indicated in our design area, and a decrease in
the amount of lubricant should cause a decrease in the
amount of impurity D, thus returning this parameter back
within the boundaries of the design area. Based on all these
data, the concentration interval suitable for the ideal for-
mulation was determined.

Based on the histogram of the data and on the optimization
data (Table XI), it was concluded that the percentage of HPMC
should be between 0.542% and 0.667% and that SSF should
be between 0.60% and 1.054% for the optimum formulation.
For concentrations falling between the previously mentioned
values, trial studies were conducted on a laboratory batch, and
complete product analysis was performed. The results generated
were consistent with the optimization data (Table XII).

CONCLUSION

Though neural networks are not a solution on their own,
they support decision-making processes, and they are useful
tools for obtaining the details of the processes with formula-
tions. In this study, it is clear that ANNs provide a huge time

benefit, also these programs are not used for pharmaceutical
industry as much as other industries.

The commercial software program FormRules was
trained to describe the relationships between raw materials
and output properties. Using the key inputs, another com-
mercial software package, INForm, was used. The object of
the study was to optimize ramipril tablet formulation and to
create knowledge and design spaces which was the new
approach for the pharmaceutical product development with
the aid of an ANN program and genetic programming.
After the optimization, it was confirmed that the explored
formulation was within the design space. Additionally, given
that the knowledge and the design areas were too close to
each other, we realized that it was possible to acquire more
information regarding the knowledge area through trials
using HPMC and lubricants in proportions other than those
used in the present study.

In addition to the effect of the formulation on the
tablet properties, the determination of the values that may
create a model is of importance for design area studies.
Using different computer programs for this study provided
a significant benefit in terms of evaluating the accuracy of
the findings. This was especially true for the programs that
generated an equation at the end, such as GEP. Especially
the programs working with the principle of giving an equa-
tion at the end, such as GEP are factors in getting rid of
the suspicious approaches suspecting the artificial neural

Fig. 4. Graphical image of knowledge and design area for outputs of
direct compressed tablets prepared by using HPMC/SSF. C.S. crushing
strength, D30min dissolution in 30 min, Imp impurity

Table XII. Finished Product Analysis Results of Direct Compressed
Tablets Prepared According to Optimization Data by Using SSF

Knowledge
area limits

Design area
limits

Analysis
data

Inputs
HPMC (%) 0.542–0.667 0.250–0.750 0.600
Sodium stearyl
fumarate (%)

0.600–1.054 1.200–1.200 0.825

Outputs
Crushing strength (N) 61.518–69.393 61.5–69.999 69
Dissolution in 30 min (%) 94.427–94.697 92.120–95.618 94
Assay (mg/tablet) 4.680–4.685 4.529–4.742 4.5
Impurity C (%) 0.014–0.015 0.010–0.015 0.01
Impurity D (%) 0.228–0.256 0.217–0.234 0.2

HPMC hydroxypropylmethylcellulose

Fig. 3. Graphical image of knowledge and design area for inputs of
tablets prepared by using HPMC/SSF. HPMC hydroxypropylmethyl-
cellulose, Lubr. Conc. lubricant concentration

Table XI. Knowledge and Design area Values of Tablet Parameters
Prepared by Direct Compression and HPMC/SSF

Knowledge area Design area

Inputs
HPMC (%) 0.231 2.000
Lubricant concentration (%) 0.757 0
Outputs
Crushing strength (N) 0.128 0.138
Dissolution in 30 min (%) 0.003 0.038
Assay (mg/tablet) −0.001 0.047
Impurity C (%) 0.071 0.500
Impurity D (%) 0.123 0.078

Note: The positive values show the direction of increasing; the nega-
tive values show the direction of decreasing as percentage difference.
HPMC hydroxypropylmethylcellulose
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networks and genetic programming to be “black boxes”
emphasized Colbourn et al., 2011 (22).
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